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ADDITIVELY AND MULTIPLICATIVELY

INVERSE NEAR-SEMIRINGS

P. DHEENA AND C. JENILA

Abstract. It has been shown that in a near-semiring (S,+, .) with (S,+)

as an inverse semigroup, the near-semiring S is strongly regular if and only

if S is regular and reduced. In a near-semiring (S,+, .) with (S,+) as an

inverse semigroup, equivalent conditions are obtained such that (S, .) is

also an inverse semigroup.

1. Introduction

A near-semiring is a nonempty set S with two binary operations ‘+’ and

‘.’ such that

(1) (S,+) is a commutative semigroup with identity 0,

(2) (S, .) is a semigroup,

(3) (x+ y)z = xz + yz for all x, y, z ∈ S.

The class of near-semirings contains the class of rings and abelian near-

rings. Hence the class of near-semirings is the most generalized algebraic

structure with two binary operations. Let (Γ,+) be any commutative semi-

group with identity 0. If M(Γ) is the set of all mappings from Γ into Γ then

M(Γ) is a near-semiring under pointwise addition and composition. M(Γ) is

neither a ring, nor a near-ring, nor a semiring.

The semigroup (S,+) is an inverse semigroup if for each a ∈ S, there

exists a unique element a′ ∈ S such that a+ a′ + a = a and a′ + a + a′ = a′.

Then a′ is said to be additive inverse of a. A semiring (R,+, .) is an additive

inverse semiring if (R,+) is an inverse semigroup. A near-semiring (S,+, .) is

an additive inverse near-semiring if (S,+) is an inverse semigroup.

Bandelt and Petrich [2] have studied additive inverse semiring with the

conditions a(a+a′) = a+a′, a(b+ b′) = (b+ b′)a and a+a(b+ b′) = a. Sen and
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Maity [9] have obtained equivalent conditions for an additive inverse semiring

to be regular. In this paper we extend these results to near-semirings. We have

obtained equivalent conditions for an additive inverse near-semiring (S,+, .)

such that the semigroup (S, .) is also an inverse semigroup.

2. Strongly regular additively inverse near-semirings

Lemma 2.1. For x, y ∈ S, x = (x′)′, (x+ y)′ = x′ + y′ and (xy)′ = x′y.

Proof: Straightforward.

If S is an additive inverse semiring then (xy)′ = x′y = xy′ and xy = x′y′.

We have E+(S) = {a ∈ S|a+ a = a} and E•(S) = {e ∈ S|e.e = e} .

Bandelt, Petrich [2] and Sen, Maity [9] have studied additive inverse semir-

ing that satisfies the following conditions:

(1) a(a+ a′) = a+ a′

(2) a(b+ b′) = (b + b′)a

(3) a+ a(b + b′) = a.

Throughout this paper we assume that additive inverse near-semiring satis-

fies a(b+b′) = (b+b′)a. We call such an additive inverse near-semiring as idem-

potent commuting additive inverse near-semiring. Rings and zero-symmetric

near-rings are natural examples of these types of near-semirings. A nonempty

subset I of S such that a+ b ∈ I for all a, b ∈ I is said to be invariant subnear-

semiring if IS ⊆ I and SI ⊆ I.

Lemma 2.2. E+(S) is an invariant subnear-semiring of an idempotent com-

muting additive inverse near-semiring S.

Proof: Let a, b ∈ E+(S). Then clearly a + b ∈ E+(S). Let s ∈ S. Now

as + as = (a + a)s = as. Therefore as ∈ E+(S). Since a ∈ E+(S) and

inverse of any additive idempotent element is itself, we have a = a
′

. Now

sa = s(a+ a) = s(a+ a′) = (a+ a′)s = as+ a′s = as+ as ∈ E+(S).

Sen and Maity [9] studied additively inverse semirings and derived equiva-

lent conditions for an additive inverse semiring to be regular. Now we introduce

strongly regular additive inverse near-semirings and characterize them.

Definition 2.1. A near-semiring S is said to be reduced if for every a ∈ S,

an ∈ E+(S) implies a ∈ E+(S) for any positive integer n.

Definition 2.2. A near-semiring S is said to be regular if for each a ∈ S there

exists an element x ∈ S such that a = axa.

Definition 2.3. A near-semiring S is said to be strongly regular if for each

a ∈ S there exists an element x ∈ S such that a = xa2.
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Lemma 2.3. Let S be a reduced idempotent commuting additive inverse near-

semiring. Then for any a, b ∈ S, ab ∈ E+(S) implies ba ∈ E+(S)and asb ∈

E+(S) for every s ∈ S.

Proof: Let ab ∈ E+(S). Now (ba)2 = baba ∈ E+(S). Thus ba ∈ E+(S). Also

(asb)2 = asbasb ∈ E+(S), showing that asb ∈ E+(S).

Lemma 2.4. Let S be an additive inverse near-semiring and a, b ∈ S. If

a+ b′ ∈ E+(S) and a+ a′ = b+ b′, then a = b.

Proof: Let a, b ∈ S. Now

a+b′ = (a+b′)+(a+b′)′ = a+b′+b+a′ = a+a′+b+b′ = b+b′+b+b′ = b+b′.

Thus a+ b′ + b = b+ b′ + b = b. Hence b = a+ b′ + b = a+ a′ + a = a.

Lemma 2.5. Let S be a reduced idempotent commuting additive inverse near-

semiring. For any a, b ∈ S and for any e ∈ E•(S), abe = aeb.

Proof: Let e ∈ E•(S). Then for any a, b ∈ S,

(a+ (ae)′)e = ae+ (ae)′e = ae+ (aee)′ = ae+ (ae)′ ∈ E+(S).

Since S is reduced, abe+ (aebe)′ ∈ E+(S). Now

abe + (abe)′ = (ab + (ab)′)e = e(ab + a′b)e = e(a + a′)be = aebe + (aebe)′.

Therefore by Lemma 2.4, abe = aebe. Also

(eb+ (ebe)′)e = ebe+ (ebe)′ ∈ E+(S).

Hence eb(eb+ (ebe)′) ∈ E+(S) and (ebe)′(eb+ (ebe)′) ∈ E+(S).Thus

(eb+ (ebe)′)2 ∈ E+(S). Since S is reduced, eb+ (ebe)′ ∈ E+(S).Now

eb+ (eb)′ = eeb+ (eeb)′ = eeb+ e′eb = (e + e′)eb

= e(e+ e′)b = e(eb+ (eb)′) = (eb+ (eb)′)e = ebe+ (ebe)′,

showing that ebe = eb. Thus abe = aeb.

Note: If S is a reduced idempotent commuting additive inverse near-semiring

with identity then the idempotents are central.

Lemma 2.5 does not hold for additive inverse near-semiring which does not

satisfy the condition a(b+ b′) = (b+ b′)a, as the following example shows.

Example 2.1. Let Γ = {0, 1} in which ‘+’ is defined by

+ 0 1

0 0 1

1 1 1

Now Γ is an additive inverse commutative semigroup. Let M(Γ) = {0, a, b, 1}

where 0, a, b, 1 are all maps from Γ to Γ. Now M(Γ) is an additive inverse

near-semiring under pointwise addition and composition and we have
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+ 0 a b 1

0 0 a b 1

a a a b b

b b b b b

1 1 b b 1

. 0 a b 1

0 0 0 0 0

a b 1 0 a

b b b b b

1 0 a b 1

Clearly M(Γ) is reduced. Here b is an idempotent with aab 6= aba, since

0 = a(b+ b′) 6= (b+ b′)a = b.

Example 2.2. Let Γ be any additive inverse commutative semigroup with

0. (Let Γ be as in Example 2.1. Now Γ × Z is an infinite additive inverse

commutative semigroup). Let S0(Γ) = {f : Γ → Γ|f(0) = 0} and let

S(1)(Γ) = {f1 + f2 + ... + fk|fi ∈ S0(Γ) and fi(g + g
′

) = (g + g
′

)fi for all

g ∈ S0(Γ)}. Then S(1)(Γ) is an additive inverse near-semiring under pointwise

addition and composition. Clearly S(1)(Γ) is neither a ring, nor a near-ring,

nor a semiring. But S(1)(Γ) is only an additive inverse near-semiring with

a(b + b′) = (b+ b′)a for all a, b ∈ S(1)(Γ).

Theorem 2.1. An idempotent commuting additive inverse near-semiring S is

strongly regular if and only if it is regular and reduced.

Proof: Let S be strongly regular and a ∈ S be such that a2 ∈ E+(S). Now

there exists x ∈ S such that a = xa2 ∈ E+(S). Hence S is reduced.

Let us show that S is regular. Let a ∈ S. Then a = xa2 for some x ∈ S.

Hence (a+ (axa)′)a = a2 + a′xa2 = a2 + a′a = a2 + (a2)′ ∈ E+(S). Since S is

reduced, a(a+ (axa)′) ∈ E+(S). Since (a+ axa′)a ∈ E+(S), (a+ axa′)a′xa ∈

E+(S). Hence (a+axa′)(axa)′ ∈ E+(S) and hence (axa)′(a+(axa)′) ∈ E+(S).

Now

(a+ (axa)′)2 = (a+ (axa)′)(a+ (axa)′)

= a(a+ (axa)′) + (axa)′(a+ (axa)′) ∈ E+(S).

Hence a+ (axa)′ ∈ E+(S). Now

a+ a′ = xa2 + (xa2)′ = xa2 + (xa)′a = (xa+ (xa)′)a = (xa+ (xa)′)xa2

= x(xa+ (xa)′)a2 = x(xa2 + (xa2)′)a = (a+ a′)xa = axa+ (axa)′.

Hence a = axa showing that S is regular.

Conversely let us assume that S is regular and reduced. Let a ∈ S. Then

a = aya for some y ∈ S. Clearly ya is an idempotent. Hence by Lemma 2.5,

we have a = aya = ayaya = ayyaa = ay2a2 = xa2, where x = ay2. Thus S is

strongly regular.
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Theorem 2.2. An idempotent commuting additive inverse near-semiring S is

strongly regular if and only if given a ∈ S there exists x ∈ S such that a = axa

and ax = xa.

Proof: Assume that S is strongly regular. Let a ∈ S, such that a = xa2, for

some x ∈ S. By Theorem 2.1, a = axa. Now (ax+ (xa)′)a = a+ (xa2)′ = a+

a′ ∈ E+(S). Since S is reduced, ax(ax+(xa)′) ∈ E+(S). Since (ax+(xa)′)a ∈

E+(S), (ax + (xa)′)x′a ∈ E+(S). Therefore (ax + (xa)′)(xa)′ ∈ E+(S) and

hence (xa)′(ax + (xa)′) ∈ E+(S). Thus (ax + (xa)′)2 ∈ E+(S) and hence

(ax+ (xa)′) ∈ E+(S). Also

ax+ (ax)′ = (a+ a′)x = (xa2 + (xa2)′)x = (xa + (xa)
′

)ax

= a(xa+ (xa)′)x = a(xax+ (xax)
′

) = (xax + (xax)
′

)a = xa+ (xa)′.

Therefore ax = xa. The converse is immediate.

Corollary 2.1. ([8],Theorem 9.158) Let N 6= {0} be a regular near-ring with

identity. The following statements are equivalent.

(1) N = N0 has no non-zero nilpotent elements.

(2) All idempotents of N are central.

Proof: If N is a near-ring, then E+(N) = 0.

3. Multiplicatively inverse near-semirings

Definition 3.1. An element a ∈ S is a weak idempotent if a2 = a+y for some

y ∈ E+(S). The set of weak idempotents of S is denoted by E∗(S).

If a ∈ (S,+, .) is an idempotent then a is a weak idempotent.

Now we give an example of a weak idempotent element which is not an

idempotent.

Following Alarcon and Polkowska [1], we have the following definition for

B(n, i) semirings without zero. Let n ≥ 2 and 1 ≤ i ≤ n and m = n− i. Let

B(n, i) be the following semirings. B(n, i) = {1, 2, ..., n−1} and the operations

in B(n, i) are:

x+B(n,i) y =















x+ y if x+ y ≤ n− 1

l if x+ y ≥ n

with l = x+ y mod m and i ≤ l ≤ n− 1.

x.B(n,i)y =















xy if xy ≤ n− 1

l if xy ≥ n

with l = xy mod m and i ≤ l ≤ n− 1.
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Example 3.1. Consider the semiring B(4, 3) = {1, 2, 3} where ‘+’ and ‘.’ are

defined as follows:

+ 1 2 3

1 2 3 3

2 3 3 3

3 3 3 3

. 1 2 3

1 1 2 3

2 2 3 3

3 3 3 3

Here 2 is a weak idempotent but not an idempotent, since 2.2 = 2 + 3 for

3 ∈ E+(B(4, 3)) but 2.2 = 3 6= 2.

Definition 3.2. A near-semiring (S,+, .) is a multiplicative inverse near-

semiring if (S, .) is an inverse semigroup.

Definition 3.3. Let (S,+, .) be a near-semiring. Let a ∈ S. If there exists a

unique x ∈ S such that axa = a+y1 and xax = x+y2 for some y1, y2 ∈ E+(S)

then x is called a multiplicative weak inverse of a.

If every element a ∈ S has multiplicative weak inverse then (S,+, .) is

called multiplicative weak inverse near-semiring. Multiplicative weak inverse

a
′

of a weak idempotent a is a itself.

Remark 3.1. If (S,+, .) is a multiplicative inverse near-semiring then it is a

multiplicative weak inverse near-semiring. But the converse is not true.

Now we give an example of an element which has multiplicative weak in-

verse but does not have a multiplicative inverse.

Example 3.2. Consider the near-semiring (S,+, .) where ‘+’ and ‘.’ are de-

fined as follows:

+ 0 a b c d

0 0 a b c d

a a a a a a

b b a b d d

c c a d c d

d d a d d d

. 0 a b c d

0 0 0 0 0 0

a 0 a a a a

b 0 a b b d

c 0 a b b d

d 0 a b b d

Here c has a multiplicative weak inverse a, since cac = c+a and aca = a+a

for a ∈ E+(S). But c does not have a multiplicative inverse.

Hereafter we assume that for any a, b ∈ S, y ∈ E+(S), a(b + y) = ab + ay.

Clearly zero-symmetric near-rings, semirings and rings satisfy this condition.

Lemma 3.1. If S is a multiplicative weak inverse near-semiring then for any

e, f ∈ E∗(S), ef = fe.
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Proof: Let e2 = e+ y1 and f2 = f + y2 for some y1, y2 ∈ E+(S). Let x be the

multiplicative weak inverse of ef . Then ef(x)ef = ef+y3 and x(ef)x = x+y4

for some y3, y4 ∈ E+(S).

(fxe)2 = f(xefx)e = f(x+ y4)e = f(xe+ y4e) = fxe+ fy4e = fxe+ y5

for some y5 ∈ E+(S). Hence fxe is a weak idempotent.

We have

ef(fxe)ef = ef2xe2f = e(f + y2)x(e + y1)f = ef + y6 for some y6 ∈ E+(S).

fxe(ef)fxe = fxe2f2xe = fx(e + y1)(f + y2)xe = fxe + y7 for some y7 ∈

E+(S). Thus fxe = ef . Therefore ef is a weak idempotent.

Similarly fe is also a weak idempotent.

Now ef(fe)ef = ef2e2f = e(f + y2)(e+ y1)f = efef + y8 = ef + y9 for some

y8, y9 ∈ E+(S).

fe(ef)fe = fe2f2e = f(e + y1)(f + y2)e = fe(f + y2)e + y10 = fefe+ y11 =

fe+ y12 for some y10, y11, y12 ∈ E+(S).

Thus fe is the multiplicative weak inverse of ef .

Since ef is the multiplicative weak inverse of the weak idempotent ef, we

have ef = fe.

Definition 3.4. The invariant subnear-semiring E+(S) is k-invariant if a+ y

and y ∈ E+(S) imply a ∈ E+(S).

Theorem 3.1. Let S be a multiplicative weak inverse near-semiring such that

E+(S) is k-invariant. For any a ∈ S, a2 ∈ E+(S) implies a ∈ E+(S) .

Proof: Let b be the multiplicative weak inverse of a. Thus aba = a+y1 and

bab = b + y2 for some y1, y2 ∈ E+(S). Thus ab and ba are weak idempotents.

Hence by Lemma 3.1, ab2a = abba = baab ∈ E+(S).

Now

a(ba(ba+ b))a = aba(ba+ b)a = (a+ y1)(ba
2 + ba)

= a(ba2 + ba) + y3 = aba+ y4 = a+ y5

for some y3, y4, y5 ∈ E+(S).

Now

(ba(ba+ b))a(ba(ba+ b)) = ba(ba+ b)(a+ y1)(ba+ b) = ba(ba+ b)a(ba+ b) + y6

= ba(ba2 + ba)(ba+ b) + y6 = (ba+ y7)(ba+ b) + y6

= ba(ba+ b) + y8

for some y6, y7, y8 ∈ E+(S).

By uniqueness, ba(ba+ b) = b

Now babba = bbaab = b2a2b ∈ E+(S). Then

babba = (b+ y2)ba = b2a+ y2ba ∈ E+(S). Since y2ba ∈ E+(S), b2a ∈ E+(S).
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Now

ab2a = abba = aba(ba+ b)ba = (a+ y1)(ba+ y9 + b2a)

= aba+ ab2a+ y10 = a+ y1 + ab2a+ y10 = a+ y11

for some y9, y10, y11 ∈ E+(S). Since ab2a ∈ E+(S), a ∈ E+(S).

Theorem 3.2. Let (S,+, .) be an idempotent commuting additive inverse near-

semiring with E+(S) as k-invariant. Then the following are equivalent:

(1) (S, .) is an inverse semigroup.

(2) (S, .) is regular and idempotents in E•(S) are central.

(3) (S, .) is regular and aS = Sa for every a ∈ S.

Proof: (1) ⇒ (2) Clearly (S, .) is regular. Let a ∈ S and e ∈ E•(S) and

a = aba for some b ∈ S. Let ab = f . Then a = fa. By Theorem 3.1, S is

reduced. By Lemma 2.5, ae = fae = fea = efa = ea.

(2) ⇒ (3) Let a ∈ S and let a = axa for some x ∈ S. For any s ∈ S,

as = axas = asxa ∈ Sa. Thus aS ⊆ Sa. Similarly Sa ⊆ aS. Thus aS = Sa.

(3) ⇒ (1) Let e, f ∈ E•(S). Now eS = Se. Hence there exists x, y ∈ S such

that fe = ex and ef = ye. Hence efe = eex = ex = fe and efe = yee = ye =

ef . Therefore ef = fe. By Theorem 1.17 [3],(S, .) is an inverse semigroup.

Corollary 3.1. ([7], Theorem1)If (N,+, .) is a near-ring then the following

are equivalent:

(1) (N, .) is an inverse semigroup.

(2) (N, .) is regular and idempotents are central.

(3) (N, .) is regular and Na = aN for every a ∈ N .

Proof: If (N,+, .) is a near-ring then clearly E+(N) = {0} is k-invariant and

a(b + y) = ab+ ay for all a, b ∈ N and y ∈ E+(N).
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